_ Correct
compilers

Secure
compilers

Provably Secure
Compilers

Matteo Busi

Dipartimento di Informatica, Universita di
Pisa

matteo.busi@di.unipi.it -
pages.di.unipi.it/busi


mailto:matteo.busi@di.unipi.it
http://pages.di.unipi.it/busi

Today's agenda

Goals & Motivations
Correctness...isn't it enough?
Notions of security
What about compiler security?
o Full abstraction
o Other notions
Alternative approaches
o Secure translation validation
o Hardware-based solutions



Compiler security?

(Roughly) the goal:
Show that a given compiler [-| preserves the security properties of the source
programs.

e |s this even relevant?
e |s this a real-world thing?



Does the optimization:

Indeed ...

pin := read_secret();
1f (check(pin))
// OK!

pin := 0; // overwrite the pin

!

pin := read_secret();
it (check(pin))
// OK!

e preserves the semantics?
e what about security?



Notions of security

e Fundamental question:

o how would you define security of a program?
e At |east two ways:

o trace properties
o hyperproperties



Security: trace properties

e Monday's refresher:

o Observablesin O
o Behaviour of p as B(p) € O* U O¥
e Now:

o B(p) is a set of traces
o Atrace property is P € Prop = p(0O¥)
= p satisfies a trace property (p F P)iff B(p) C P



Security: trace properties (cont.)

We can identify two relevant classes of trace properties:

o Safety properties: roughly that something bad will never happen
o e.g. Chinese-wall policy: "a program never writes to the network after
having read from a file."
e Liveness properties: roughly that something good will eventually happen
o e.g. Guaranteed service: "every request is eventually satisfied."



Security: trace properties (cont.)

Why are they nice?

e Nice properties:

o Theorem: VP € Prop.(3S € Safety, L € Liveness. P =S N L)
e Relevant for security
e (* We pretend that they are) easy to understand



Correctness and trace properties

Recall refinement as seen on monday:
[-] is correct if Vs € S.B(s) 2 B([s])
Refinement preserves all the trace properties (e.g. the chinese-wall policy above)!
Theorem: If P € Prop, || correctand s F P, then [s] F P.
Proof: blackboard.



Security: hyperproperties

Trace properties are not enough &

e e.g. non-interference: two executions that differ on secret inputs must be
indistinguishable to untrusted users

Hyperproperties to the rescue:

e |dea: the set of allowed systems
* P e HP = p(p(0¥)) = p(Prop),
* pEPIfB(p) €P

® We can Now express properties involving multiple traces!

10



Security: hyperproperties (cont.)

Again, two relevant classes of hyperproperties:

e hypersafeties and hyperliveness roughly as above
e subsume trace properties

e still with the same nice properties

e relevant for security!

e Cons: not easy anymore! &



Correctness and hyperproperties

Consider the subset-closed (SSC) hyperproperties
e ie. PcSSCifPcePand P C P, thenP' € P

Theorem:
ifP € SSC, -] correctand s F P, then [s] F P.

Proof: blackboard.
Remark:

e Observables are still arbitrary, thus
e no preservation if the considered (hyper)property cannot be expressed using

O

12



Where are the attackers?

Security needs attackers!

e Up to now: implicit and passive attackers, that could just see (!) the
observables

Let's see...

18



A CATtacker! -:

1 12 Inyur GOIIIIIIBI‘

14



Ok, Seriously... Attackers?

From now onwards:

e Recall that contexts are programs with an hole (denote as C's and C7 + plug-
in operator |-|)
e The active attacker

o provides context of execution
o observes the actions (as before)

1



Compiler security: full abstraction

Full abstraction (FA):

e standard concept in the field of semantics
e first way to define secure compilation

Definition:

e Assume behavioural equivalence: s; >~ s, (i.e. equi-convergence)
o Acompiler [-] isFAiffVsy,s9 € S.81 >~ 59 < [s1] =~ [s2].

16



Compiler security: full abstraction
(cont.)

e Correctness: s; ~ Sy < [s1] =~ [sq]
e Security: 51 ~ s3 = [s1] ~ [s2]
e Both are complex to prove

o esp. the second one
= contrapositive: [s1] 2 [s2] = s1 % 59
= ysually to be shown via back-translation, i.e. "transform" a context
distinguishing the two compiled programs into a context
distinguishing their source counterparts

17



Issues with full abstraction

FA is nice and pretty strong if used correctly, but has some issues:

e Difficult to prove a compiler (not) to be FA
e FA compilers may produce inefficient code
e Mainstream compilers are not usually FA

18



Other notions of security

Recently, robust hyperproperty preservation (RHP) have been proposed.
A compiler is RHP whenever

VP e F,s€ S5.(VCs.Cqs| EP) = (VCr.Cr[[s]] F P)

i.e. it preserves all the hyperproperties in the set F.

1)



RHP is not alone =

Robust Hyi:nerproperty
Preservation (RHP)

|
Robust Subset-Closed Hyperproperty

Preservation (RSCHCQC)

.1:3 o |

QX

3 o Robust K-Subset-Closed Hyperproperty
&5 Preservation (RKSCHP)

8 =

55 |

T Robust 2-Subset-Closed Hyperproperty

Preservation (R2SCHP)

Trace
Properties
Criteria (§2)

Robust Dense Property
Preservation (RDP)

(from https://arxiv.org/abs/1807.04603)

l
Robust Trace Property
Preservation (RTP)

Robust Hypersafety !
Preservation (RHSC)

Robust K-Hypersafety

Preservation (RKHSP)

v

Robust 2-Hypersafety

Preservation (R2HSP) ~— ———

v

Robust Safety Property
Preservation (RSP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

Question: where's FA? - Tricky question! (see Sec. 5 of [6])

20


https://arxiv.org/abs/1807.04603

Other approaches

Many possible alternative approaches to compiler security:

e Non-robust approaches, i.e. w/o contexts
e Secure translation validation
o Lift the notion of translation validation to secure compilation
o Under investigation: which principles are more suitable?
e Hardware-based approaches
o Enclaves:
= |ntel SGX, Sancus, ...
o Micro-policies based architectures

21



Concluding remarks

Compiler security means preservation of some (hyper)property
o This allows to reason at source level to rule out attacks at the target!
As for correctness, many principles
o Full abstraction, w. many applications (e.g. proof of security for
mitigations against micro-architectural attacks)
o New and emerging principles
Of course, many other approaches in the literature
No working examples in the slides
o Things get complex even for very simple languages

2



The End

If you want to have a chat about secure compilation

just ask Prof. Degano or contact me '~

28}



Bibliography

Surveys

[1]. Marco Patrignani, Amal Ahmed, and Dave Clarke. "Formal approaches to secure
compilation: A survey of fully abstract compilation and related work." ACM CSUR
51.6 (2019): 125.

[2]. Matteo Busi and Letterio Galletta. "A Brief Tour of Formally Secure
Compilation." ITASEC 2019.

24



Bibliography (cont.)

Secure, non-robust compilation

[3]. Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. "Secure compilation of
side-channel countermeasures: the case of cryptographic “constant-time”." IEEE
CSF 2018.

[4]. Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. "Secure compilation of
side-channel countermeasures: the case of cryptographic “constant-time”." IEEE
CSF 2018.

[5]. Jonathan Protzenko, et al. "Verified low-level programming embedded in F."
ACM ICFP 2017.

25



Bibliography (cont.)

Recent ideas and advances

[6]. Carmine Abate, et al. "Journey beyond full abstraction: Exploring robust
property preservation for secure compilation." IEEE CSF 2019.

[7]. Dominique Devriese, Marco Patrignani, and Frank Piessens. "Parametricity
versus the universal type." ACM POPL 2017.

8]. PriSC 2020 program, https://popl20.sigplan.org/home/prisc-2020
9]. PriSC 2019 program, https://popl19.sigplan.org/track/prisc-2019

[10]. Matteo Busi, Pierpaolo Degano and Letterio Galletta. "Translation Validation
for Security Properties." https://arxiv.org/abs/1901.05082

26


https://popl20.sigplan.org/home/prisc-2020
https://popl19.sigplan.org/track/prisc-2019
https://arxiv.org/abs/1901.05082

