
Provably Secure
Compilers

Matteo Busi

Dipartimento di Informatica, Università di
Pisa

matteo.busi@di.unipi.it -
pages.di.unipi.it/busi

11

mailto:matteo.busi@di.unipi.it
http://pages.di.unipi.it/busi

Today's agenda
Goals & Motivations
Correctness...isn't it enough?
Notions of security
What about compiler security?

Full abstraction
Other notions

Alternative approaches
Secure translation validation
Hardware-based solutions

22

Compiler security?
(Roughly) the goal:
Show that a given compiler preserves the security properties of the source
programs.

Is this even relevant?
Is this a real-world thing?

[[⋅]]

33

Indeed ...
pin := read_secret();
if (check(pin))
 // OK!

pin := 0; // overwrite the pin

↓
pin := read_secret();
if (check(pin))
 // OK!

Does the optimization:

preserves the semantics?
what about security? 44

Notions of security
Fundamental question:

how would you define security of a program?
At least two ways:

trace properties
hyperproperties

55

Security: trace properties
Monday's refresher:

Observables in
Behaviour of as

Now:

 is a set of traces
A trace property is

 satisfies a trace property () iff

O
p B(p) ⊆ O ∪∗ Oω

B(p)
P ∈ Prop ≜ ℘(O)ω

p p ⊨ P B(p) ⊆ P

66

Security: trace properties (cont.)
We can identify two relevant classes of trace properties:

Safety properties: roughly that something bad will never happen
e.g. Chinese-wall policy: "a program never writes to the network after
having read from a file."

Liveness properties: roughly that something good will eventually happen
e.g. Guaranteed service: "every request is eventually satisfied."

77

Security: trace properties (cont.)
Why are they nice?

Nice properties:
Theorem:

Relevant for security
(We pretend that they are) easy to understand

∀P ∈ Prop. (∃S ∈ Safety,L ∈ Liveness.P = S ∩ L)

88

Correctness and trace properties
Recall refinement as seen on monday:

[[⋅]] is correct if ∀s ∈ S.B(s) ⊇ B([[s]])

Refinement preserves all the trace properties (e.g. the chinese-wall policy above)!

Theorem: If , correct and , then .

Proof: blackboard.

P ∈ Prop [[⋅]] s ⊨ P [[s]] ⊨ P

99

Security: hyperproperties
Trace properties are not enough

e.g. non-interference: two executions that differ on secret inputs must be
indistinguishable to untrusted users

Hyperproperties to the rescue:

Idea: the set of allowed systems
,

 iff
we can now express properties involving multiple traces!

P ∈ HP ≜ ℘(℘(O)) =ω ℘(Prop)
p ⊨ P B(p) ∈ P

1010

Security: hyperproperties (cont.)
Again, two relevant classes of hyperproperties:

hypersafeties and hyperliveness roughly as above
subsume trace properties
still with the same nice properties
relevant for security!
Cons: not easy anymore!

1111

Correctness and hyperproperties
Consider the subset-closed () hyperproperties

i.e. if and , then

Theorem:
If , correct and , then .

Proof: blackboard.

Remark:

Observables are still arbitrary, thus
no preservation if the considered (hyper)property cannot be expressed using

SSC

P ∈ SSC P ∈ P P ⊆′ P P ∈′ P

P ∈ SSC [[⋅]] s ⊨ P [[s]] ⊨ P

O
1212

Where are the attackers?
Security needs attackers!

Up to now: implicit and passive attackers, that could just see (!) the
observables

Let's see...

1313

A CATtacker!

1414

Ok, Seriously... Attackers?
From now onwards:

Recall that contexts are programs with an hole (denote as and + plug-
in operator)
The active attacker

provides context of execution
observes the actions (as before)

CS CT

[⋅]

1515

Compiler security: full abstraction
Full abstraction (FA):

standard concept in the field of semantics
first way to define secure compilation

Definition:

Assume behavioural equivalence: (i.e. equi-convergence)
A compiler is FA iff .

s ≃1 s2
[[⋅]] ∀s , s ∈1 2 S . s ≃1 s ⇔2 [[s]] ≃1 [[s]]2

1616

Compiler security: full abstraction
(cont.)

Correctness:

Security:

Both are complex to prove

esp. the second one
contrapositive:
usually to be shown via back-translation, i.e. ''transform'' a context
distinguishing the two compiled programs into a context
distinguishing their source counterparts

s ≃1 s ⇐2 [[s]] ≃1 [[s]]2

s ≃1 s ⇒2 [[s]] ≃1 [[s]]2

[[s]]1 ≃ [[s]] ⇒2 s1 ≃ s2

1717

Issues with full abstraction
FA is nice and pretty strong if used correctly, but has some issues:

Difficult to prove a compiler (not) to be FA
FA compilers may produce inefficient code
Mainstream compilers are not usually FA

1818

Other notions of security
Recently, robust hyperproperty preservation (RHP) have been proposed.
A compiler is RHP whenever

∀P ∈ F, s ∈ S. (∀C .C [s] ⊨S S P) ⇒ (∀C .C [[[s]]] ⊨T T P)

i.e. it preserves all the hyperproperties in the set .F

1919

RHP is not alone

(from https://arxiv.org/abs/1807.04603)

Question: where's FA? - Tricky question! (see Sec. 5 of [6]) 2020

https://arxiv.org/abs/1807.04603

Other approaches
Many possible alternative approaches to compiler security:

Non-robust approaches, i.e. w/o contexts
Secure translation validation

Lift the notion of translation validation to secure compilation
Under investigation: which principles are more suitable?

Hardware-based approaches
Enclaves:

Intel SGX, Sancus, ...
Micro-policies based architectures

2121

Concluding remarks
Compiler security means preservation of some (hyper)property

This allows to reason at source level to rule out attacks at the target!
As for correctness, many principles

Full abstraction, w. many applications (e.g. proof of security for
mitigations against micro-architectural attacks)
New and emerging principles

Of course, many other approaches in the literature
No working examples in the slides

Things get complex even for very simple languages

2222

The End
If you want to have a chat about secure compilation

just ask Prof. Degano or contact me

2323

Bibliography

Surveys

[1]. Marco Patrignani, Amal Ahmed, and Dave Clarke. "Formal approaches to secure
compilation: A survey of fully abstract compilation and related work." ACM CSUR
51.6 (2019): 125.

[2]. Matteo Busi and Letterio Galletta. "A Brief Tour of Formally Secure
Compilation." ITASEC 2019.

2424

Bibliography (cont.)

Secure, non-robust compilation

[3]. Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. "Secure compilation of
side-channel countermeasures: the case of cryptographic “constant-time”." IEEE
CSF 2018.

[4]. Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. "Secure compilation of
side-channel countermeasures: the case of cryptographic “constant-time”." IEEE
CSF 2018.

[5]. Jonathan Protzenko, et al. "Verified low-level programming embedded in F."
ACM ICFP 2017.

2525

Bibliography (cont.)

Recent ideas and advances

[6]. Carmine Abate, et al. "Journey beyond full abstraction: Exploring robust
property preservation for secure compilation." IEEE CSF 2019.

[7]. Dominique Devriese, Marco Patrignani, and Frank Piessens. "Parametricity
versus the universal type." ACM POPL 2017.

[8]. PriSC 2020 program, https://popl20.sigplan.org/home/prisc-2020

[9]. PriSC 2019 program, https://popl19.sigplan.org/track/prisc-2019

[10]. Matteo Busi, Pierpaolo Degano and Letterio Galletta. "Translation Validation
for Security Properties." https://arxiv.org/abs/1901.05082

2626

https://popl20.sigplan.org/home/prisc-2020
https://popl19.sigplan.org/track/prisc-2019
https://arxiv.org/abs/1901.05082

