
Provably Correct
Compilers

Matteo Busi
(matteo.busi@di.unipi.it)

Dipartimento di Informatica, Università di
Pisa

11

mailto:matteo.busi@di.unipi.it

Today's agenda
From proBably correct compilers to proVably correct ones!

A simple correct compiler for expressions

Beyond simple expressions

Compilers and notions of correctness

State of the art

An alternative approach: translation validation

Wed: beyond correctness!

22

Correctness: trivial?
Aren't all compilers correct? Isn't it a trivial property?
Well...the following is trivially wrong

for(i=0; i < 10; i++)
 printf("%d\n", i);

↓

printf("42\n");

33

Correctness: trivial? (cont.)
What about:

int n = some_pt->n;
if (some_pt == NULL)
 // Some code
use (n)

↓

int n = some_pt->n;
use (n)

Usually correct, but not when in kernel code!

44

Arithmetic expressions
Recall arithmetic expressions:

a ::= v ∣ x ∣ a +0 a ∣1 a −0 a ∣1 a ∗0 a1

when translated to a stack-based expression language:

i ::= Iconst(v) ∣ Ivar(x) ∣ Iadd ∣ Isub ∣ Imul ∣ i ; i ∣0 1 ()

See the blackboard.

55

Correctness theorem
What's the meaning of correctness in this case?

Observe that:

1. Evaluation always terminates (why?)
2. We focus on the final result

So, show that

Theorem: iff .

Proof: By structural induction on (see the blackboard).

σ ⊢ a→∗ v σ ⊢ [], [[a]] →∗ [v], ()

a

66

Beyond expressions?
Phew! Not that simple

Problem:

This was an ad-hoc approach that does not scale well
More complex programming languages?

Need to think carefully about:

How to model compilers
How to define correctness and its relation with the languages

77

A model for compilers
A compiler is a function that translates programs written in
a source language into programs written into a target language .

More in general, we can see the compiler as a composition:

[[⋅]] ≜T
S [[⋅]] ∘T

IRn …∘ [[⋅]]IR1
S

Notation: When clear what and are, we will simply write .

[[⋅]]T
S

S T

S T [[⋅]]

88

Notions of correctness: intuition
Intuition:

The behavior of the compiled code must be the same as the behavior of
the source .

Crucial to define properly:

For expressions:

Shown above:
More in general?

B([[s]])
B(s)

B

B(a) = {v ∣ ∃σ.σ ⊢ a→∗ v}
B(i) = {v ∣ ∃σ.σ ⊢ [], i→∗ [v], ()}

B(a) = B([[a]])

99

Behaviours
 depends on the set of observables of (either in or):

Set of observable actions , e.g. I/O ops, memory ops, return values...
Semantics of the languages enriched with elements of :

p→ p becomes p′ o
p′

meaning that the program performs an observable action when moving from
to

B p S T

O
O

o p

p′

1010

Behaviours (cont.)
 is then defined as the set of all possible strings of observable actions (traces)

starting from any initial state.

In symbols:

B(p) = {o ⋯ o o ⋯ ∣0 k k+1 p
o0 ⋯

ok
pk

ok+1 …}

B(p)

1111

Correctness, not a single notion
Issue: the equality works just in special cases.

Consider again the language of expressions and the compiler on the blackboard.

What if we change the observables as follows

O = {ϵ} ∪ {op ∣ op ∈ {+,−, ∗}}

and observe each time an actual operation is performed (e.g., for debugging)?

1212

Correctness...
Can we still consider correct? Indeed.

But now

B(a) = B([[a]])

Why? Observables are chosen somewhat arbitrary!

[[⋅]]

1313

Another notion of correctness
What's going on?
Our intuitive notion of correctness doesn't coincide with the formalization!

Now the compiled version has "less" behaviors, i.e.

B(a) ⊇ B([[a]])

this is called refinement.

Finally the real notion of correctness?

1414

Backward (lockstep) simulation
A sufficient condition for refinement is the existence of a backward simulation, i.e. a
relation between target and source states, s.t.

1. Initial and final states are related by ;
2. If and , then (.

Pretty hard!

Usually difficult to build for general languages (e.g. when considering non
terminating programs)
Especially when a single step of the source is compiled to multiple steps in the
target
Not enough in most cases (e.g. our expression compiler! :)

∼

∼
t,σT

o
t ,σ′ T

′ σ ∼T σS s,σS
o

s ,σ ⇒′
S
′ σ ∼T

′ σ)S
′

1515

Example: (stuttering) backward
simulation

That is: to show the existence of we must define a decompilation function!∼ 1616

Alternatives?

Also: stuttering (forward/backward) simulations, plus simulations, safe, ...

1717

State of the art: CompCert and
CakeML

This is just theory, show me some real compiler!

CompCert: is one of the most famous verified compilers
Compiles and optimizes C language to many real-world architectures
Fully written in Coq
Mechanized proof of correctness via forward simulation (enough, why? :)

: I/O and ops. on variables
CakeML: more recent

Compiles a subset of Standard ML
Bootstrapped compiler, proof mechanized in HOL4

: values of the language(s) (source, intermediate and target)

O volatile

O
1818

An alternative: translation validation
In this lecture, we considered an a priori notion of correctness.
What about considering just a single run of the compiler each time?

Translation validation (TV) requires this:
- Take an actual program and compile it to
- Verify that that particular run of the compiler produced the "right" compiler

s [[s]]

1919

TV an overview

Note: this is a fully automatic process (modulo decidability!)

2020

Beyond whole programs
Many real-world programs are partial, i.e. they are not written as a whole by
programmers
Partial programs are made "full" by linking with a context

Contexts model external definitions from standard libraries, code written
by third parties, external components, ...

Issue: All the above cannot deal with partial programs.

2121

Beyond whole programs (cont.)
Just a glimpse of the existing solutions

1. Separate correctness:
Compile the partial source program to
Compile the source context with the same compiler
Link them together
Correctness of the result is guaranteed!

s [[s]]

2222

Beyond whole programs (cont.)
2. Compositional correctness:

Compile the partial program to
Choose a target context that correctly implements the source one
Link them together
Correctness of the result is guaranteed!

This second variant:

is much stronger
much more useful (think of JVM/.NET interoperability!)
also more difficult to achieve

s [[s]]

2323

Summing up
Guaranteeing the correctness of a compiler via an a priori proof
Saw a simple example of a correct compiler for arith. expressions

Many issues in proving it such
Much more issues for (slightly) more complex languages

However, at least two real-world compilers following this approach
Translation validation mitigates some issues, but still not widely used

So:

Proofs are rather involved
Usually need a manual (or assisted, but not automatic) proof
Still niche adoption
Huge improvements recently!

2424

The End
Wednesday: Is there something beyond correctness?

2525

Bibliography
All the above material is inspired and distilled from the following papers:

[1]. "Optimization-unstable code." https://lwn.net/Articles/575563/
[2]. Xavier Leroy. "The formal verification of compilers." DeepSpec Summer School
2017. https://deepspec.org/event/dsss17/leroy-dsss17.pdf
[3]. William J. Bowman. "What even is compiler correctness?"
https://www.williamjbowman.com/blog/2017/03/24/what-even-is-compiler-
correctness/
[4]. Xavier Leroy. "A Formally Verified Compiler Back-end."
https://link.springer.com/article/10.1007/s10817-009-9155-4
[5]. CompCert compiler. http://compcert.inria.fr/
[6]. CakeML compiler. https://cakeml.org/

2626

https://lwn.net/Articles/575563/
https://deepspec.org/event/dsss17/leroy-dsss17.pdf
https://www.williamjbowman.com/blog/2017/03/24/what-even-is-compiler-correctness/
https://link.springer.com/article/10.1007/s10817-009-9155-4
http://compcert.inria.fr/
https://cakeml.org/

Bibliography (cont.)
[7]. Amir Pnueli, Michael Siegel, and Eli Singerman. "Translation validation."
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 1998.
[8]. George C. Necula. "Translation validation for an optimizing compiler." ACM
SIGPLAN notices. Vol. 35. No. 5. ACM, 2000.

2727

