THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE'S COMPILING.

HEY! GET BPtCK
10 UORK‘

‘i\

GH CARRY ON.

Provably Correct
Compilers

Matteo Busi
(matteo.busi@di.unipi.it)

Dipartimento di Informatica, Universita di
Pisa

mailto:matteo.busi@di.unipi.it

Today's agenda

From proBably correct compilers to proVably correct ones!
A simple correct compiler for expressions

Beyond simple expressions

Compilers and notions of correctness

State of the art

An alternative approach: translation validation

Wed: beyond correctness!

Correctness: trivial?

e Aren't all compilers correct? Isn't it a trivial property?
e Well...the following is trivially wrong

for(i=0; i < 10; i++)
printf("%d\n", 1i);

|

printf("42\n");

Correctness: trivial? (cont.)

What about;

int n = some_pt->n;

if (some_pt == NULL)
// Some code

use (n)

l

int n = some_pt->n;
use (n)

Usually correct, but not when in kernel code! 4

Arithmetic expressions

Recall arithmetic expressions:
a:=v|x|ay+a|ag—ar|ag*a;
when translated to a stack-based expression language:
i 2= Iconst(v) | Ivar(x) | Iadd | Isub | Imul | ig;i1 | ()

See the blackboard.

Correctness theorem

What's the meaning of correctness in this case?

Observe that:

1. Evaluation always terminates (why?)
2. We focus on the final result

So, show that
Theorem:o - a —* viffo - ||, [a] =% [v], ().

Proof: By structural induction on a (see the blackboard).

Beyond expressions?

Phew! Not that simple &
Problem:

e This was an ad-hoc approach that does not scale well
e More complex programming languages?

Need to think carefully about:

e How to model compilers
e How to define correctness and its relation with the languages

A model for compilers

A compiler is a function [[]]:*S; that translates programs written in
a source language S into programs written into a target language T'.

More in general, we can see the compiler as a composition:
S A& 1 7lIR, S
[z =77 o .o ']z,

Notation: When clear what S and T are, we will simply write [-].

Notions of correctness: intuition

Intuition:

The behavior of the compiled code B([s]|) must be the same as the behavior of
the source B(s).

Crucial to define BB properly:

e For expressions:
o B(a) ={v |do.ot a—* v}
o B(i) ={v | Jo.o k= [|,i =" [v],()}
o Shown above: B(a) = B([a])

e More in general?

Behaviours

B depends on the set of observables of p (eitherin S or T'):

e Set of observable actions O, e.g. I/0 ops, memory ops, return values...
e Semantics of the languages enriched with elements of O:

p—p becomes p—

meaning that the program performs an observable action o when moving from p
to p’

10

Behaviours (cont.)

B(p) is then defined as the set of all possible strings of observable actions (traces)
starting from any initial state.

In symbols:

Ok+1

B(p) ={oo- - 0pops1-+ |p— -+ — pp — ...}

11

Correctness, not a single notion

Issue: the equality works just in special cases.

Consider again the language of expressions and the compiler on the blackboard.

What if we change the observables as follows

O ={e}U{op|op € {+,—,*}}

and observe each time an actual operation is performed (e.g., for debugging)?

12

Correctness...

Can we still consider [-] correct? Indeed.

But now

B(a) # B(|a])

Why? Observables are chosen somewhat arbitrary!

18

Another notion of correctness

What's going on?
Our intuitive notion of correctness doesn't coincide with the formalization!

Now the compiled version has "less" behaviors, i.e.
B(a) 2 B([a])
this is called refinement.

Finally the real notion of correctness?

14

Backward (lockstep) simulation

A sufficient condition for refinement is the existence of a backward simulation, i.e. a
relation ~ between target and source states, s.t.

1. Initial and final states are related by ~;
O g O 1 / /
2.1ft,or — t',op and o ~ og,then(s,06 — §',0¢ = o ~ 0%).

Pretty hard!
e Usually difficult to build for general languages (e.g. when considering non

terminating programs)
e Especially when a single step of the source is compiled to multiple steps in the

target
e Not enough in most cases (e.g. our expression compiler! :)

1

Example: (stuttering) backward
simulation

one step
142 -

\ A

""ff) /]
compilation decompilation _.~"decompilation
r

-

e e

y
lconst(1) —Ilconst(2) —— |add -

nil 1 :: nil 2 21 nil 3 :: nil

That is: to show the existence of ~ we must define a decompilation function! 16

Alternatives?

Bisimulation

if T deterministic
e

‘___________/
if S deterministic

Forward
simulation

Backward
simulation

Preservation of
specifications

Also: stuttering (forward/backward) simulations, plus simulations, safe, ...

17

State of the art: CompCert and
CakeML

This is just theory, show me some real compiler!

e CompCert: is one of the most famous verified compilers
o Compiles and optimizes C language to many real-world architectures
o Fully written in Coqg
o Mechanized proof of correctness via forward simulation (enough, why? :)
o (:1/0 and ops. on volatile variables
e CakeML: more recent
o Compiles a subset of Standard ML
o Bootstrapped compiler, proof mechanized in HOL4
o (D:values of the language(s) (source, intermediate and target)

18

An alternative: translation validation

In this lecture, we considered an a priori notion of correctness.
What about considering just a single run of the compiler each time?

Translation validation (TV) requires this:
- Take an actual program s and compile it to ||
- Verify that that particular run of the compiler produced the "right" compiler

1)

[g] Bad Counter
s e Example

Analyser

- \ Good [Proof
[script

Note: this is a fully automatic process (modulo decidability!)

Beyond whole programs

e Many real-world programs are partial, i.e. they are not written as a whole by
programmers
e Partial programs are made "full" by linking with a context
o Contexts model external definitions from standard libraries, code written
by third parties, external components, ...

Issue: All the above cannot deal with partial programs.

21

Beyond whole programs (cont.)

Just a glimpse of the existing solutions

1. Separate correctness:
o Compile the partial source program s to |s]
o Compile the source context with the same compiler
o Link them together
o Correctness of the result is guaranteed!

Beyond whole programs (cont.)

2. Compositional correctness:
o Compile the partial program s to |s]
o Choose a target context that correctly implements the source one
o Link them together
o Correctness of the result is guaranteed!

This second variant;:

e ismuch stronger
e much more useful (think of JVM/.NET interoperability!)
e also more difficult to achieve

28}

Summing up

Guaranteeing the correctness of a compiler via an a priori proof
Saw a simple example of a correct compiler for arith. expressions

o Many issues in proving it such

o Much more issues for (slightly) more complex languages
However, at least two real-world compilers following this approach
Translation validation mitigates some issues, but still not widely used

Proofs are rather involved

Usually need a manual (or assisted, but not automatic) proof
Still niche adoption

Huge improvements recently!

24

The End

Wednesday: Is there something beyond correctness?

25

Bibliography

All the above material is inspired and distilled from the following papers:

[1]. "Optimization-unstable code." https://lwn.net/Articles/575563/

[2]. Xavier Leroy. "The formal verification of compilers." DeepSpec Summer School
2017. https://deepspec.org/event/dsss17//leroy-dsss17.pdf

[3]. William J. Bowman. "What even is compiler correctness?"
https://www.williamjbowman.com/blog/2017/03/24/what-even-is-compiler-
correctness/

[4]. Xavier Leroy. "A Formally Verified Compiler Back-end."
https://link.springer.com/article/10.1007/s10817-009-9155-4

[5]. CompCert compiler. http://compcert.inria.fr/

[6]. CakeML compiler. https://cakeml.org/

26

https://lwn.net/Articles/575563/
https://deepspec.org/event/dsss17/leroy-dsss17.pdf
https://www.williamjbowman.com/blog/2017/03/24/what-even-is-compiler-correctness/
https://link.springer.com/article/10.1007/s10817-009-9155-4
http://compcert.inria.fr/
https://cakeml.org/

Bibliography (cont.)

[7]. Amir Pnueli, Michael Siegel, and Eli Singerman. "Translation validation."
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 1998.

[8]. George C. Necula. "Translation validation for an optimizing compiler." ACM
SIGPLAN notices. Vol. 35. No. 5. ACM, 2000.

27/

