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Today's agenda

From proBably correct compilers to proVably correct ones!
A simple correct compiler for expressions

Beyond simple expressions

Compilers and notions of correctness

State of the art

An alternative approach: translation validation

Wed: beyond correctness!



Correctness: trivial?

e Aren't all compilers correct? Isn't it a trivial property?
e Well...the following is trivially wrong

for(i=0; i < 10; i++)
printf("%d\n", 1i);

|

printf("42\n");



Correctness: trivial? (cont.)

What about;

int n = some_pt->n;

if (some_pt == NULL)
// Some code

use (n)

l

int n = some_pt->n;
use (n)

Usually correct, but not when in kernel code! 4



Arithmetic expressions

Recall arithmetic expressions:
a:=v|x|ay+a|ag—ar|ag*a;
when translated to a stack-based expression language:
i 2= Iconst(v) | Ivar(x) | Iadd | Isub | Imul | ig;i1 | ()

See the blackboard.



Correctness theorem

What's the meaning of correctness in this case?

Observe that:

1. Evaluation always terminates (why?)
2. We focus on the final result

So, show that
Theorem:o - a —* viffo - ||, [a] =% [v], ().

Proof: By structural induction on a (see the blackboard).



Beyond expressions?

Phew! Not that simple &
Problem:

e This was an ad-hoc approach that does not scale well
e More complex programming languages?

Need to think carefully about:

e How to model compilers
e How to define correctness and its relation with the languages



A model for compilers

A compiler is a function [[]]:*S; that translates programs written in
a source language S into programs written into a target language T'.

More in general, we can see the compiler as a composition:
S A& 1 7lIR, S
[z =77 o .o ']z,

Notation: When clear what S and T are, we will simply write [-].



Notions of correctness: intuition

Intuition:

The behavior of the compiled code B([s]|) must be the same as the behavior of
the source B(s).

Crucial to define BB properly:

e For expressions:
o B(a) ={v |do.ot a—* v}
o B(i) ={v | Jo.o k= [|,i =" [v],()}
o Shown above: B(a) = B([a])

e More in general?



Behaviours

B depends on the set of observables of p (eitherin S or T'):

e Set of observable actions O, e.g. I/0 ops, memory ops, return values...
e Semantics of the languages enriched with elements of O:

p—p becomes p—

meaning that the program performs an observable action o when moving from p
to p’
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Behaviours (cont.)

B(p) is then defined as the set of all possible strings of observable actions (traces)
starting from any initial state.

In symbols:

Ok+1

B(p) ={oo- - 0pops1-+ |p— -+ — pp — ...}
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Correctness, not a single notion

Issue: the equality works just in special cases.

Consider again the language of expressions and the compiler on the blackboard.

What if we change the observables as follows

O ={e}U{op|op € {+,—,*}}

and observe each time an actual operation is performed (e.g., for debugging)?
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Correctness...

Can we still consider [-] correct? Indeed.

But now

B(a) # B(|a])

Why? Observables are chosen somewhat arbitrary!
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Another notion of correctness

What's going on?
Our intuitive notion of correctness doesn't coincide with the formalization!

Now the compiled version has "less" behaviors, i.e.
B(a) 2 B([a])
this is called refinement.

Finally the real notion of correctness?
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Backward (lockstep) simulation

A sufficient condition for refinement is the existence of a backward simulation, i.e. a
relation ~ between target and source states, s.t.

1. Initial and final states are related by ~;
O g O 1 / /
2.1ft,or — t',op and o ~ og,then(s,06 — §',0¢ = o ~ 0%).

Pretty hard!
e Usually difficult to build for general languages (e.g. when considering non

terminating programs)
e Especially when a single step of the source is compiled to multiple steps in the

target
e Not enough in most cases (e.g. our expression compiler! :)
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Example: (stuttering) backward
simulation

one step
142 -

\ A

""ff ) / ]
compilation decompilation _.~"decompilation
r

-

e e

y
lconst(1) —Ilconst(2) —— |add -

nil 1 :: nil 2 21 nil 3 :: nil

That is: to show the existence of ~ we must define a decompilation function! 16



Alternatives?

Bisimulation

if T deterministic
e

‘__\_________/
if S deterministic

Forward
simulation

Backward
simulation

Preservation of
specifications

Also: stuttering (forward/backward) simulations, plus simulations, safe, ...
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State of the art: CompCert and
CakeML

This is just theory, show me some real compiler!

e CompCert: is one of the most famous verified compilers
o Compiles and optimizes C language to many real-world architectures
o Fully written in Coqg
o Mechanized proof of correctness via forward simulation (enough, why? :)
o (:1/0 and ops. on volatile variables
e CakeML: more recent
o Compiles a subset of Standard ML
o Bootstrapped compiler, proof mechanized in HOL4
o (D:values of the language(s) (source, intermediate and target)
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An alternative: translation validation

In this lecture, we considered an a priori notion of correctness.
What about considering just a single run of the compiler each time?

Translation validation (TV) requires this:
- Take an actual program s and compile it to ||
- Verify that that particular run of the compiler produced the "right" compiler

1)
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[ script

Note: this is a fully automatic process (modulo decidability!)



Beyond whole programs

e Many real-world programs are partial, i.e. they are not written as a whole by
programmers
e Partial programs are made "full" by linking with a context
o Contexts model external definitions from standard libraries, code written
by third parties, external components, ...

Issue: All the above cannot deal with partial programs.
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Beyond whole programs (cont.)

Just a glimpse of the existing solutions

1. Separate correctness:
o Compile the partial source program s to |s]
o Compile the source context with the same compiler
o Link them together
o Correctness of the result is guaranteed!



Beyond whole programs (cont.)

2. Compositional correctness:
o Compile the partial program s to |s]
o Choose a target context that correctly implements the source one
o Link them together
o Correctness of the result is guaranteed!

This second variant;:

e ismuch stronger
e much more useful (think of JVM/.NET interoperability!)
e also more difficult to achieve

28}



Summing up

Guaranteeing the correctness of a compiler via an a priori proof
Saw a simple example of a correct compiler for arith. expressions

o Many issues in proving it such

o Much more issues for (slightly) more complex languages
However, at least two real-world compilers following this approach
Translation validation mitigates some issues, but still not widely used

Proofs are rather involved

Usually need a manual (or assisted, but not automatic) proof
Still niche adoption

Huge improvements recently!

24



The End

Wednesday: Is there something beyond correctness?
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